Des éléments de corrigé du sujet des Olympiades 2020 Sujets académiques

Exercice académique 1

PARTIE A: « Jouons avec la graine ».

1. Indice 1:1 Indice 2:11 Indice 3:21 Indice 4:1211

2. Indice 1:0 Indice 2:10 Indice 3:1110

Indice 4 : 3110 Indice 5 : 132110 Indice 6 : 1113122110

3. Indice 1:42 Indice 2:1412 Indice 3:11141112 Indice 4:31143112

4. Oui, la graine 22 donne une suite constante, tous les termes seront égaux à 22.

PARTIE B: Quelques démonstrations avec la graine 1.

1. Le chiffre 4 semble ne pas pouvoir être obtenu dans la suite de Conway de graine 1.

2.

- a. Il est nécessaire d'avoir soit 1111 soit 2222 soit 3333.
- Expliquez clairement en n'oubliant pas que 1111 peut apparaître sous la forme (a1)(11) (1b). Prenons par exemple le cas où l'on a obtenu 211112 à l'étape n. Etudions toutes les façons possibles d'obtenir cette séquence. Pour cela il faut étudier les paires possibles et leurs antécédents

	(21)(11)(13)	2)(11)(11)(3
Antécédents	(11)(1)(3)	2)(1)(1)(
	Impossible	Impossible
	111 s'écrira 31 à l'étape suivante	11 s'écrira 21 à l'étape suivante

Les autres séquences 311113 et 311112 mènent à des raisonnements similaires.

c. Prenons par exemple le cas où l'on a obtenu 12221 à l'étape n. Etudions toutes les façons possibles d'obtenir cette séquence. Pour cela il faut étudier les paires possibles et leurs antécédents

	(12)(22)(21)	1)(22)(22)(1
Antécédents	(2)(22)(11)	1)(22)(22)(
	Impossible	Impossible
	222 s'écrira 32 à l'étape suivante	2222 s'écrira 42 à l'étape suivante
		(Et cela contredit aussi que n est le
		premier rang d'apparition d'un 4)

Les autre séquences 12223, 322221 et 322223 mènent à des raisonnements similaires.

d. Prenons par exemple le cas où l'on a obtenu 133331 à l'étape n Etudions toutes les façons possibles d'obtenir cette séquence. Pour cela il faut étudier les paires possibles et leurs antécédents

	(13)(33)(31)	1)(33)(33)(1
Antécédents	(3)(333)(111)	1)(333)(333)(
	Impossible	Impossible
	3333 s'écrira 43 à l'étape	333333 s'écrira 63 à l'étape suivante
	suivante	

Les autre séquences 133332, 233331 et 233332 mènent à des raisonnements similaires.

e. Il n'est donc pas possible d'obtenir un chiffre 4 avec la suite de Conway de graine 1.

3.

- **a.** $T_{10}=1$, $D_{10}=5$, $S_{10}=7$, $C_{10}=20$ et $C_{9}=14$
- **b.** Chaque singleton compte pour 1 chiffre, chaque doublet compte pour 2 chiffres et chaque triplet compte pour 3 chiffre, d'où la formule : $C_n = 3T_n + 2D_n + S_n$
- c. Les triplets donneront une paire de chiffres, aaa donnera 3a
- **d.** Les doublets donneront une paire de chiffres, aa donnera 2a. Les singletons donneront une paire de chiffres, a donnera 1a
- e. A l'étape n il n'y a que des triplets, doublets et singletons car il ne peut pas y avoir de chiffre 4 (ou supérieur). Or chacun d'eux va générer des paires de chiffres. Ainsi : $C_{n+1} = 2T_n + 2D_n + 2S_n$
- **f.** D'après la formule précédente, le nombre de termes à l'étape n+1 est pair car multiple de 2.
- **4.** Prenons par exemple le cas où l'on a obtenu a333b à l'étape n et c'est le premier rang d'apparition d'une telle séquence.

Etudions toutes les façons possibles d'obtenir cette séquence.

Pour cela il faut étudier les paires possibles et leurs antécédents

	(a3)(33)(3b)	a)(33)(3b)(
Antécédents	(3)(333)(bbb)	a)(333)(bbb)(
<i>c</i> ≥ 4	Impossible	Impossible
	3333 s'écrira c3 avec à	Voir ci-dessous
	l'étape suivante	

Montrons que de telles séquences sont impossibles à obtenir.

Prenons le cas de 333111

	(a3)(33)(11)(1b)	a)(33)(31)(11)(b
Antécédents	(3)(333)(1)(b)	a)(333)(111)(1)(
$c \ge 4c \ge 4$	Impossible	Impossible
	3333 s'écrira c3 avec à	3331111 s'écrira 33c1 avec
	l'étape suivante	

L'autre cas : 333222 se traite de la même manière.

Exercice 2 : spécialité

I Ecriture binaire

$$4=0\times2^3+1\times2^2+0\times2^1+0\times2^0$$
 donne 0100
9=1×2³+0×2²+0×2¹+1×2⁰ donne 1001

$$8=1\times2^3+0\times2^2+0\times2^1+0\times2^0$$
 donne 1000
 $15=1\times2^3+1\times2^2+1\times2^1+1\times2^0$ donne 1111

II En route vers le bibinaire

1. 11 s'écrit 1011 donc
$$KI_{(bibi)}$$

2020 s'écrit $BIDEBO_{(bibi)}$

03 s'écrit 0011 donc
$$\text{HI}_{(bibi)}$$

11/03/2020 s'écrit $\text{KI}_{(bibi)}$ / $\text{HI}_{(bibi)}$ / $\text{BIDEBO}_{(bibi)}$

НО	НА	HE	НІ	ВО	ВА	BE	ВІ	КО	KA	KE	KI	DO	DA	DE	DI
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

2. a) KADO_(bibi): KADO_(bibi) = KA_(bibi)
$$\times 16^{1} + DO_{(bibi)} \times 16^{0}$$
 s'écrit $9 \times 16^{1} + 12 \times 16^{0} = 156$

$$DEBIBI_{(bibi)}: DEBIBI_{(bibi)} = DE_{(bibi)} \times 16^{2} + BI_{(bibi)} \times 16^{1} + BI_{(bibi)} \times 16^{0} = 14 \times 16^{2} + 7 \times 16^{1} + 7 \times 16^{0} = 3703$$

b. KADODEBIBI_(bibi)

$$KA_{(bibi)} \times 16^4 + DO_{(bibi)} \times 16^3 + DE_{(bibi)} \times 16^2 + BI_{(bibi)} \times 16^1 + BI_{(bibi)} \times 16^0$$
 soit $156 \times 16^2 + 3703$ ou $9 \times 16^4 + 12 \times 16^3 + 14 \times 16^2 + 7 \times 16^1 + 7 \times 16^0 = 642679$

3. a.
$$\begin{split} \mathrm{KE}_{(b\,ib\,i)} + \mathrm{BE}_{(b\,ib\,i)} &= 10 + 6 = 16 = 1 \times 16^1 \; \mathsf{donc} \; \; \mathrm{KE}_{(b\,ib\,i)} + \mathrm{DE}_{(b\,ib\,i)} = \mathrm{HAHO}_{(b\,ib\,i)} \\ \mathrm{DI}_{(b\,ib\,i)} + \mathrm{BE}_{(b\,ib\,i)} &= 15 + 6 = 16 + 5 = 1 \times 16^1 + 5 \times 16^0 = \mathrm{HABA}_{(b\,ib\,i)} \; \mathsf{donc} \\ \mathrm{HAHO}_{(b\,ib\,i)} + \mathrm{HA}_{(b\,ib\,i)} = 1 \times 16^1 + 0 \times 16^0 + 1 = 1 \times 16^1 + 1 \times 16^0 = \mathrm{HAHA}_{(b\,ib\,i)} \\ \mathrm{donc} \; \; \mathrm{HAHO}_{(b\,ib\,i)} + \mathrm{HA}_{(b\,ib\,i)} = \mathrm{HAHA}_{(b\,ib\,i)} \end{split}$$

b.
$$\begin{split} \text{KEDI}_{(bibi)} + \text{BEBE}_{(bibi)} = \text{KE}_{(bibi)} \times 16^1 + \text{DI}_{(bibi)} \times 16^0 + \text{BE}_{(bibi)} \times 16^1 + \text{BE}_{(bibi)} \times 16^0 \\ &= (\text{KE}_{(bibi)} + \text{BE}_{(bibi)}) \times 16^1 + (\text{DI}_{(bibi)} + \text{BE}_{(bibi)}) \times 16^0 \\ &= \text{HAHO}_{(bibi)} \times 16^1 + \text{HABA}_{(bibi)} \times 16^0 \\ &= \text{HA}_{(bibi)} \times 16^2 + (\text{HO}_{(bibi)} + \text{HA}_{(bibi)}) \times 16^1 + \text{BA}_{(bibi)} \times 16^0 \\ &\text{donc KEDI}_{(bibi)} + \text{BEBE}_{(bibi)} = \text{HAHABA}_{(bibi)} \end{split}$$

III. Nombres bibinaires particuliers

Partie A

1.
$$n_1 = HA_{(bibi)} = 16^0 = 1$$
 $n_2 = HAHA_{(bibi)} = 16^1 + 16^0 = 17$ $n_3 = HAHAHA_{(bibi)} = 16^2 + 16^1 + 16^0 = 273$

2.
$$n_2 = 16 + 1 = 16 \times n_1 + 1$$
 $n_3 = 16^2 + 16 + 1 = 16 \times (16 + 1) + 1 = 16 \times n_2 + 1$

3. a)
$$n_{p+1} = \text{HA}_{(b\,ib\,i)} \times 16^{p+1} + \text{HA}_{(b\,ib\,i)} \times 16^{p} + \dots + \text{HA}_{(b\,ib\,i)} \times 16^{1} + \text{HA}_{(b\,ib\,i)} \times 16^{0}$$

 $n_{p+1} = 16 \times (\text{HA}_{(b\,ib\,i)} \times 16^{p} + \text{HA}_{(b\,ib\,i)} \times 16^{p-1} + \dots + \text{HA}_{(b\,ib\,i)} \times 16^{0}) + \text{HA}_{(b\,ib\,i)} \times 16^{0} = 16 \times n_{p} + 1$

b)
$$v_{p+1} = 16v_p \text{ ssi } n_{p+1} - \alpha = 16 \times (n_p - \alpha) \text{ ssi } 16n_p + 1 - \alpha = 16n_p - 16\alpha$$

donc ssi $1 + 15\alpha = 0$ donc $\alpha = \frac{-1}{15}$

c)
$$n_p = v_1 \times 16^{p-1} + \alpha = (n_1 + \frac{1}{15}) \times 16^{p-1} - \frac{1}{15} = (1 + \frac{1}{15}) \times 16^{p-1} - \frac{1}{15} = \frac{16}{15} \times 16^{p-1} - \frac{1}{15} = \frac{1}{15} (16^p - 1)$$

Partie B

- 1. a) $(1+x+x^2)(1-x+x^2)=1-x+x^2+x-x^2+x^3+x^2-x^3+x^4=1+x^2+x^4$
 - b) HAHAHA $_{(bibi)}$ =16²+16¹+1 HOHAHOHAHOHA $_{(bibi)}$ =16⁴+16²+1 en utilisant l'égalité démontrée en a) avec x=16 , on a

en utilisant l'égalité démontrée en a) avec x=16 , on a $1+16^2+16^4=(1+16+16^2)(1-16+16^2)$

donc $HOHAHOHAHOHA_{(bibi)}$ est divisible par $HAHAHA_{(bibi)}$

2. non pas pour p=2 : $HOHAHOHA_{(bibi)}$ =33 et $HAHA_{(bibi)}$ =17 et 33 n'est pas divisible par 17

Exercice 3: non spécialité

I Ecriture binaire

$0=0\times2^3+0\times2^2+0\times2^1+0\times2^0$ donne 0000	$1=0\times2^3+0\times2^2+0\times2^1+1\times2^0$ donne 0001
$2=0\times2^3+0\times2^2+1\times2^1+0\times2^0$ donne 0010	$3=0\times2^3+0\times2^2+1\times2^1+1\times2^0$ donne 0011
$4=0\times2^3+1\times2^2+0\times2^1+0\times2^0$ donne 0100	$5=0\times2^3+1\times2^2+0\times2^1+1\times2^0$ donne 0101
$6=0\times2^3+1\times2^2+1\times2^1+0\times2^0$ donne 0110	$7 = 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$ donne 0111
$8=1\times2^3+0\times2^2+0\times2^1+0\times2^0$ donne 1000	$9=1\times2^3+0\times2^2+0\times2^1+1\times2^0$ donne 1001
$10=1\times2^3+0\times2^2+1\times2^1+0\times2^0$ donne 1010	$11=1\times2^3+0\times2^2+1\times2^1+1\times2^0$ donne 1011
$12=1\times2^3+1\times2^2+0\times2^1+0\times2^0$ donne 1100	$13=1\times2^3+1\times2^2+0\times2^1+1\times2^0$ donne 1101
$14=1\times2^3+1\times2^2+1\times2^1+0\times2^0$ donne 1110	$15=1\times2^3+1\times2^2+1\times2^1+1\times2^0$ donne 1111

II En route vers le bibinaire

 $\begin{array}{lll} \textbf{1.} & \textbf{11 s'\'ecrit 1011 donc} & \textbf{KI}_{(bibi)} & \textbf{03 s'\'ecrit 0011 donc} & \textbf{HI}_{(bibi)} \\ & \textbf{2020 s'\'ecrit} & \textbf{BIDEBO}_{(bibi)} & \textbf{11/03/2020 s'\'ecrit} & \textbf{KI}_{(bibi)} \textit{/} & \textbf{HI}_{(bibi)} \textit{/} & \textbf{BIDEBO}_{(bibi)} \\ \end{array}$

НО	НА	HE	н	во	ВА	BE	ВІ	ко	KA	KE	KI	DO	DA	DE	DI
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

2. a)
$$KADO_{(bibi)}$$
: $KADO_{(bibi)} = KA_{(bibi)} \times 16^{1} + DO_{(bibi)} \times 16^{0}$ s'écrit $9 \times 16^{1} + 12 \times 16^{0} = 156$ $DEBIBI_{(bibi)}$: $DEBIBI_{(bibi)} = DE_{(bibi)} \times 16^{2} + BI_{(bibi)} \times 16^{1} + BI_{(bibi)} \times 16^{0}$ $= 14 \times 16^{2} + 7 \times 16^{1} + 7 \times 16^{0} = 3703$

b. KADODEBIBI_(bibi)

$$KA_{(bibi)} \times 16^4 + DO_{(bibi)} \times 16^3 + DE_{(bibi)} \times 16^2 + BI_{(bibi)} \times 16^1 + BI_{(bibi)} \times 16^0$$
 soit $156 \times 16^2 + 3703$ ou $9 \times 16^4 + 12 \times 16^3 + 14 \times 16^2 + 7 \times 16^1 + 7 \times 16^0 = 642$ 679

3. a.
$$KE_{(bibi)} + BE_{(bibi)}$$

 $KE_{(bibi)} + BE_{(bibi)} = 10 + 6 = 16 = 1 \times 16^{1}$ donc $KE_{(bibi)} + DE_{(bibi)} = HAHO_{(bibi)}$
 $DI_{(bibi)} + BE_{(bibi)}$
 $DI_{(bibi)} + BE_{(bibi)} = 15 + 6 = 16 + 5 = 1 \times 16^{1} + 5 \times 16^{0} = HABA_{(bibi)}$ donc

$$\begin{aligned} & \text{HAHO}_{(bibi)} + \text{HA}_{(bibi)} = 1 \times 16^1 + 0 \times 16^0 + 1 = 1 \times 16^1 + 1 \times 16^0 = \text{HAHA}_{(bibi)} \\ & \text{donc } & \text{HAHO}_{(bibi)} + \text{HA}_{(bibi)} = \text{HAHA}_{(bibi)} \end{aligned}$$

b.
$$\begin{split} \text{KEDI}_{(bibi)} + \text{BEBE}_{(bibi)} &= \text{KE}_{(bibi)} \times 16^1 + \text{DI}_{(bibi)} \times 16^0 + \text{BE}_{(bibi)} \times 16^1 + \text{BE}_{(bibi)} \times 16^0 \\ &= (\text{KE}_{(bibi)} + \text{BE}_{(bibi)}) \times 16^1 + (\text{DI}_{(bibi)} + \text{BE}_{(bibi)}) \times 16^0 \\ &= \text{HAHO}_{(bibi)} \times 16^1 + \text{HABA}_{(bibi)} \times 16^0 \\ &= \text{HA}_{(bibi)} \times 16^2 + (\text{HO}_{(bibi)} + \text{HA}_{(bibi)}) \times 16^1 + \text{BA}_{(bibi)} \times 16^0 \\ &= \text{donc KEDI}_{(bibi)} + \text{BEBE}_{(bibi)} = \text{HAHABA}_{(bibi)} \end{split}$$

4.

a.
$$DO_{(bibi)} \times BE_{(bibi)} = 12 \times 6 = 72 = 4 \times 16 + 8$$
 donc $DO_{(bibi)} \times BE_{(bibi)} = BOKO_{(bibi)}$
b. $DODO_{(bibi)} \times BEBE_{(bibi)} = (DO_{(bibi)} \times 16^{1} + DO_{(bibi)} \times 16^{0}) \times (BE_{(bibi)} \times 16^{1} + BE_{(bibi)} \times 16^{0})$

$$\begin{array}{l} \text{donc} \ \ DO_{(bibi)} \times BE_{(bibi)} \times 16^2 + (DO_{(bibi)} \times BE_{(bibi)} + DO_{(bibi)} \times BE_{(bibi)}) \times 16^1 + DO_{(bibi)} \times BE_{(bibi)} \times 16^0 \\ \text{ce qui est \'egal \`a} \ \ (4 \times 16 + 8) \times 16^2 + (2 \times (4 \times 16^1 + 8)) \times 16^1 + (4 \times 16^1 + 8) \times 16^0 \\ 4 \times 16^3 + 8 \times 16^2 + 8 \times 16^2 + 16 \times 16^1 + 4 \times 16^1 + 8 \times 16^0 = 4 \times 16^3 + 16 \times 16^2 + 16^2 + 4 \times 16^1 + 8 \times 16^0 \\ \text{donc \'egal \`a} \ \ 5 \times 16^3 + 1 \times 16^2 + 4 \times 16^1 + 8 \times 16^0 \\ \text{donc} \ \ DODO_{(bibi)} \times BEBE_{(bibi)} = BAHABOKO_{(bibi)} \end{array}$$

III. Nombres bibinaires particuliers

- a. $HOHAHOHA_{(bibi)} = HA_{(bibi)} \times 16^4 + HA_{(bibi)} \times 16^2 + HA_{(bibi)} \times 16^0 = 65793$ $HAHAHA_{(bibi)} = 16^2 + 16^1 + 16^0 = 273$ 65793:273 = 241
- b. $241=15\times16+1=\mathrm{DIHA}_{(bibi)}$ donc HOHAHOHAHOHA $_{(bibi)}=$ HAHAHA $_{(bibi)}\times$ DIHA $_{(bibi)}$
- 2. BOBOBOBO_(bibi)=BO_(bibi)×16³+BO_(bibi)×16²+BO_(bibi)×16¹+BO_(bibi)×16⁰ = $4 \times 16^3 + 4 \times 16^2 + 4 \times 16^1 + 4 \times 16^0 = 17476$

$$\begin{aligned} & \text{HAKA}_{(bibi)} \!\!=\! & \text{HA}_{(bibi)} \!\!\times\! 16^1 \!\!+\! \text{KA}_{(bibi)} \!\!\times\! 16^0 \!\!=\! 16 \!\!+\! 9 \!\!=\! 25 \\ & 17476 \!\!=\! 699 \!\!\times\! 25 \!\!+\! 1 \\ & 1 \!\!=\! & \text{HA}_{(bibi)} \text{ pour le reste} \\ & 699 \!\!=\! 2 \!\!\times\! 16^2 \!\!+\! 11 \!\!\times\! 16 \!\!+\! 11 \!\!=\! & \text{HEKIKI}_{(bibi)} \text{ pour le quotient} \\ & \textbf{\textit{donc}} \ \ \text{BOBOBO}_{(bibi)} \!\!=\! & \text{HEKIKI}_{(bibi)} \!\!\times\! \text{HAKA}_{(bibi)} \!\!+\! \text{HA}_{(bibi)} \end{aligned}$$